Skip to main content

深入理解Vue响应式原理

引入

<template>
<div class="hello">
{{message}}
</div>
</template>

<script>
export default {
name: 'HelloWorld',
props: {
msg: String
},
data() {
return {
message: 'Hello'
}
},
mounted() {
setTimeout(()=>{this.message='Hello World'},2000)
}
}
</script>

这段代码会在2s后更新message的值,而message在页面上也会同步更新。我们并没有直接对DOM进行操作,为什么DOM发生了变化?

核心原理

Vue的响应式的核心原理就是ES5的Object.defineProperty方法,这就是为什么Vue不兼容IE8及以下浏览器的原因。

不兼容原因详解

Object.defineProperty

此方法用于在对象上添加或修改一个属性,并返回这个对象。

方法接受三个参数,第一个参数obj表示要操作的对象,第二个参数prop要添加或修改的属性名,第三个参数是该属性的描述符descriptor。

/**
* Adds a property to an object, or modifies attributes of an existing property.
* @param o Object on which to add or modify the property. This can be a native JavaScript object (that is, a user-defined object or a built in object) or a DOM object.
* @param p The property name.
* @param attributes Descriptor for the property. It can be for a data property or an accessor property.
*/
defineProperty(o: any, p: PropertyKey, attributes: PropertyDescriptor & ThisType<any>): any;

比较重要的是第三个参数descriptor,可以在此参数中,为该对象的属性定义getter和setter方法,有了getter和setter方法,这个对象才可能是响应式对象。

举个例子:在dataObj上定义name属性,并书写他的get和set方法。

    let value = '111';
let dataObj = {}
Object.defineProperty(dataObj, 'name', {
get: function () {
console.log("获取value")
return value;
},
set: function (newValue) {
console.log("修改value:"+newValue)
value = newValue;
}
})
console.log(dataObj.name);
dataObj.name='333'
console.log(dataObj.name)
[HMR] Waiting for update signal from WDS...
HelloWorld.vue?140d:24 获取value
HelloWorld.vue?140d:32 111
HelloWorld.vue?140d:28 修改value:333
HelloWorld.vue?140d:24 获取value
HelloWorld.vue?140d:34 333

或者这样写,想要修改属性的值,必须说明writable为true。

才能通过dataObj.name = '333'修改该值,不然会报错。

let dataObj = {}
Object.defineProperty(dataObj, 'name', {
value: '111',
writable: true
})
console.log(dataObj.name);//111
dataObj.name = '333'
console.log(dataObj.name)///333

属性描述符接口

interface PropertyDescriptor {
configurable?: boolean;
enumerable?: boolean;
value?: any;
writable?: boolean;
get?(): any;
set?(v: any): void;
}

到此,知道Vue就是用这个方法让一个普通对象成为响应式对象。

接下里,我们看看Vue什么时候把它变成响应式对象的,以及具体变成响应式对象的代码长什么样子,另外还有哪些细节要处理

初始化响应式对象

这里我们就要去看Vue的源代码了,感兴趣的把Vue2.x版本的github代码clone下来自己看。

在new Vue的时候,调用的是src/core/instance/index.js

import { initMixin } from './init'
import { stateMixin } from './state'
import { renderMixin } from './render'
import { eventsMixin } from './events'
import { lifecycleMixin } from './lifecycle'
import { warn } from '../util/index'

function Vue (options) {
if (process.env.NODE_ENV !== 'production' &&
!(this instanceof Vue)
) {
warn('Vue is a constructor and should be called with the `new` keyword')
}
this._init(options)
}

initMixin(Vue)
stateMixin(Vue)
eventsMixin(Vue)
lifecycleMixin(Vue)
renderMixin(Vue)

export default Vue

在这里面调用了initMixin(Vue)

这个方法在同目录下的init.js中定义,不用看这个文件里的其他代码,只看它里面调用了initState(vm)方法,然后我们在去找这个方法。

export function initMixin (Vue: Class<Component>) {
Vue.prototype._init = function (options?: Object) {
const vm: Component = this
// a uid
vm._uid = uid++

let startTag, endTag
/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
startTag = `vue-perf-start:${vm._uid}`
endTag = `vue-perf-end:${vm._uid}`
mark(startTag)
}

// a flag to avoid this being observed
vm._isVue = true
// merge options
if (options && options._isComponent) {
// optimize internal component instantiation
// since dynamic options merging is pretty slow, and none of the
// internal component options needs special treatment.
initInternalComponent(vm, options)
} else {
vm.$options = mergeOptions(
resolveConstructorOptions(vm.constructor),
options || {},
vm
)
}
/* istanbul ignore else */
if (process.env.NODE_ENV !== 'production') {
initProxy(vm)
} else {
vm._renderProxy = vm
}
// expose real self
vm._self = vm
initLifecycle(vm)
initEvents(vm)
initRender(vm)
callHook(vm, 'beforeCreate')
initInjections(vm) // resolve injections before data/props
initState(vm)
initProvide(vm) // resolve provide after data/props
callHook(vm, 'created')

/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
vm._name = formatComponentName(vm, false)
mark(endTag)
measure(`vue ${vm._name} init`, startTag, endTag)
}

if (vm.$options.el) {
vm.$mount(vm.$options.el)
}
}
}

这个方法在同目录下的state.js中定义。可以看到它调用了initPropsinitData()initComputed()等方法。

export function initState (vm: Component) {
vm._watchers = []
const opts = vm.$options
if (opts.props) initProps(vm, opts.props)
if (opts.methods) initMethods(vm, opts.methods)
if (opts.data) {
initData(vm)
} else {
observe(vm._data = {}, true /* asRootData */)
}
if (opts.computed) initComputed(vm, opts.computed)
if (opts.watch && opts.watch !== nativeWatch) {
initWatch(vm, opts.watch)
}
}

我们主要看下initData方法,因为我们经常在data里定义变量,这个方法里的vm.$options.data就是我们在Vue中定义的data。

function initData (vm: Component) {
let data = vm.$options.data
data = vm._data = typeof data === 'function'
? getData(data, vm)
: data || {}
if (!isPlainObject(data)) {
data = {}
process.env.NODE_ENV !== 'production' && warn(
'data functions should return an object:\n' +
'https://vuejs.org/v2/guide/components.html#data-Must-Be-a-Function',
vm
)
}
// proxy data on instance
const keys = Object.keys(data)
const props = vm.$options.props
const methods = vm.$options.methods
let i = keys.length
while (i--) {
const key = keys[i]
if (process.env.NODE_ENV !== 'production') {
if (methods && hasOwn(methods, key)) {
warn(
`Method "${key}" has already been defined as a data property.`,
vm
)
}
}
if (props && hasOwn(props, key)) {
process.env.NODE_ENV !== 'production' && warn(
`The data property "${key}" is already declared as a prop. ` +
`Use prop default value instead.`,
vm
)
} else if (!isReserved(key)) {
proxy(vm, `_data`, key)
}
}
// observe data
observe(data, true /* asRootData */)
}

The data property "${key}" is already declared as a prop. + Use prop default value instead.这段话是不是很熟悉?😁,这是我们第一次同时使用data和props的时候,可能会遇到的。如果在props中和data中定义了相同名字的变量,控制台会报这样的错。

可以看到,对于data中每个变量,也就是这里的每个key,都使用了 proxy(vm, _data, key)方法,那么我们去看看这个方法。

export function proxy (target: Object, sourceKey: string, key: string) {
sharedPropertyDefinition.get = function proxyGetter () {
return this[sourceKey][key]
}
sharedPropertyDefinition.set = function proxySetter (val) {
this[sourceKey][key] = val
}
Object.defineProperty(target, key, sharedPropertyDefinition)
}

这方法接收三个参数target,sourceKey,key。

可以看到它调用这个方法时,target是vm,sourceKey是_data,key传的是当前遍历到的key。

vm就是我们经常用到的,在Vue中用到的this,通常我们在开发中使用data中的变量a,我们用this.a来获取,这个this就是此时的vm。

那么这个proxy方法到底在干什么?别着急,我慢慢讲。

现在target为vm没错,假设我们在Vue data上定义了变量a,那么此时的key就是a。

<script>
export default {
name: 'HelloWorld',
props: {
msg: String
},
data() {
return {
a: 'Hello',
}
},
}
</script>

他在sharedPropertyDefinition上定义了get、set方法,并调用了 Object.defineProperty(target, key, sharedPropertyDefinition),由此,在vm上定义了属性a,并把a的属性描述符设置成了sharedPropertyDefinition

也就是说,现在获取属性a,就是调用sharedPropertyDefinition.get方法。修改属性a,就是调用sharedPropertyDefinition.set方法。

来看get方法,他返回this[sourceKey][key],this就是vm,sourceKey就是_data,key就是a。

由此,返回了vm[_data].a,也就是vm上属性_data中的a。

那么vm[_data]是啥?在上面的initData方法的开始,有这样的一部分代码。他把我们在Vue中的data赋给了vm._data。

let data = vm.$options.data
data = vm._data = typeof data === 'function'
? getData(data, vm)
: data || {}

由此,我们可以得知,原先我们在Vue代码中,应该用this._data.a来访问我们定义在data中的变量a,现在只需要this.a即可访问,因为它会调用sharedPropertyDefinition的get方法,来返回this._data.a。set方法同样的道理,可以通过this.a='xxxx',来修改a的值,而不用通过this._data.a='xxxx'。

<script>
export default {
name: 'HelloWorld',
props: {
msg: String
},
data() {
return {
a: 'Hello',
}
},
mounted() {
console.log(this.a)
}
}
</script>

到此为止,我们看到了 Object.defineProperty在Vue源码中的位置。

但,利用这个方法只是基础,所谓响应式,应该是页面能感受到该变量的值进行修改了,那么就需要有个人在变量修改之后通知页面。

这个人就是observer(观察者)。

可以在initData方法的最后看到这样的代码:observe(data, true /* asRootData */),他调用了observe方法,把data包裹进一个Observer里 ob = new Observer(value)

/**
* Attempt to create an observer instance for a value,
* returns the new observer if successfully observed,
* or the existing observer if the value already has one.
*/
export function observe (value: any, asRootData: ?boolean): Observer | void {
if (!isObject(value) || value instanceof VNode) {
return
}
let ob: Observer | void
if (hasOwn(value, '__ob__') && value.__ob__ instanceof Observer) {
ob = value.__ob__
} else if (
shouldObserve &&
!isServerRendering() &&
(Array.isArray(value) || isPlainObject(value)) &&
Object.isExtensible(value) &&
!value._isVue
) {
ob = new Observer(value)
}
if (asRootData && ob) {
ob.vmCount++
}
return ob
}

Observer

我们看下Observer的定义:为了便于观察,我把数组对象相关的代码删掉了,只留下普通对象相关的代码。可以看到对于data,它调用了walk函数this.walk(value)。在walk函数中遍历了data中的所有值,每个都调用了 defineReactive(obj, keys[i])方法,由此把data中的每个变量变成了响应式的。我们接下来去看看defineReactive方法干了什么。

🤣 def(value, '__ob__', this)这个方法为data添加了__ob__属性,这就是我们经常在浏览器控制台看到的那个,我之前是挺烦这个东西的,看着挺丑的。

export class Observer {
value: any;
dep: Dep;
vmCount: number; // number of vms that have this object as root $data

constructor (value: any) {
this.value = value
this.dep = new Dep()
this.vmCount = 0
def(value, '__ob__', this)
if (Array.isArray(value)) {
if (hasProto) {
protoAugment(value, arrayMethods)
} else {
copyAugment(value, arrayMethods, arrayKeys)
}
this.observeArray(value)
} else {
this.walk(value)
}
}

/**
* Walk through all properties and convert them into
* getter/setters. This method should only be called when
* value type is Object.
*/
walk (obj: Object) {
const keys = Object.keys(obj)
for (let i = 0; i < keys.length; i++) {
defineReactive(obj, keys[i])
}
}
}
/**
* Attempt to create an observer instance for a value,
* returns the new observer if successfully observed,
* or the existing observer if the value already has one.
*/
export function observe (value: any, asRootData: ?boolean): Observer | void {
if (!isObject(value) || value instanceof VNode) {
return
}
let ob: Observer | void
if (hasOwn(value, '__ob__') && value.__ob__ instanceof Observer) {
ob = value.__ob__
} else if (
shouldObserve &&
!isServerRendering() &&
(Array.isArray(value) || isPlainObject(value)) &&
Object.isExtensible(value) &&
!value._isVue
) {
ob = new Observer(value)
}
if (asRootData && ob) {
ob.vmCount++
}
return ob
}

体现响应式原理的地方(defineReactive)

defineReactive方法new了个Dep,Dep是单词Dependency(依赖)的缩写。这个Dep是个依赖中心,此时,data中的每个变量都有了一个依赖中心,也就是每个变量都有一个dep。我们去看下Dep里面有什么东西。


/**
* Define a reactive property on an Object.
*/
export function defineReactive (
obj: Object,
key: string,
val: any,
customSetter?: ?Function,
shallow?: boolean
) {
const dep = new Dep()

const property = Object.getOwnPropertyDescriptor(obj, key)
if (property && property.configurable === false) {
return
}

// cater for pre-defined getter/setters
const getter = property && property.get
const setter = property && property.set
if ((!getter || setter) && arguments.length === 2) {
val = obj[key]
}

let childOb = !shallow && observe(val)
Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
get: function reactiveGetter () {
const value = getter ? getter.call(obj) : val
if (Dep.target) {
dep.depend()
if (childOb) {
childOb.dep.depend()
if (Array.isArray(value)) {
dependArray(value)
}
}
}
return value
},
set: function reactiveSetter (newVal) {
const value = getter ? getter.call(obj) : val
/* eslint-disable no-self-compare */
if (newVal === value || (newVal !== newVal && value !== value)) {
return
}
/* eslint-enable no-self-compare */
if (process.env.NODE_ENV !== 'production' && customSetter) {
customSetter()
}
// #7981: for accessor properties without setter
if (getter && !setter) return
if (setter) {
setter.call(obj, newVal)
} else {
val = newVal
}
childOb = !shallow && observe(newVal)
dep.notify()
}
})
}

Dep里面有个subs,而且还是Watcher类型的数组。subs意为subscribe,订阅者们。

也就是说这个subs会存储所有想要观察该变量的观察者,对于观察者们来讲,他们订阅了该变量。

export default class Dep {
static target: ?Watcher;
id: number;
subs: Array<Watcher>;

constructor () {
this.id = uid++
this.subs = []
}

addSub (sub: Watcher) {
this.subs.push(sub)
}

removeSub (sub: Watcher) {
remove(this.subs, sub)
}

depend () {
if (Dep.target) {
Dep.target.addDep(this)
}
}

notify () {
// stabilize the subscriber list first
const subs = this.subs.slice()
if (process.env.NODE_ENV !== 'production' && !config.async) {
// subs aren't sorted in scheduler if not running async
// we need to sort them now to make sure they fire in correct
// order
subs.sort((a, b) => a.id - b.id)
}
for (let i = 0, l = subs.length; i < l; i++) {
subs[i].update()
}
}
}

观察者什么时候订阅的

上面的内容还没有说完,为了更好的理解,先来看下观察者们什么时候订阅的该变量。

lifecycle.js中的mountComponent函数中有这样一段代码:在这里new了一个Watcher,我们去看下Watcher的定义。

  let updateComponent
/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
updateComponent = () => {
const name = vm._name
const id = vm._uid
const startTag = `vue-perf-start:${id}`
const endTag = `vue-perf-end:${id}`

mark(startTag)
const vnode = vm._render()
mark(endTag)
measure(`vue ${name} render`, startTag, endTag)

mark(startTag)
vm._update(vnode, hydrating)
mark(endTag)
measure(`vue ${name} patch`, startTag, endTag)
}
} else {
updateComponent = () => {
vm._update(vm._render(), hydrating)
}
}

// we set this to vm._watcher inside the watcher's constructor
// since the watcher's initial patch may call $forceUpdate (e.g. inside child
// component's mounted hook), which relies on vm._watcher being already defined
new Watcher(vm, updateComponent, noop, {
before () {
if (vm._isMounted && !vm._isDestroyed) {
callHook(vm, 'beforeUpdate')
}
}
}, true /* isRenderWatcher */)
hydrating = false

Watcher

watcher的定义比较长,主要说一下几点,注意看下构造器:

newDeps:存储的是这个watcher依赖了哪些dep。注意是newDeps,不是Deps,两个区别以后再说。

构造器中的this.value调用了this.get函数。this.get函数又调用了pushTarget函数,在pushTarget函数中,把当前这个watcher赋给了全局的Dep.target。注意看下面Dep的定义中,target是个static变量,全局只有一份。

通过调用value = this.getter.call(vm, vm)方法触发了该watcher所需要的全部变量的get方法。(至于为什么触发了,在哪里触发了,不用管,简单解释下,上面的代码中我们new Watcher的时候传入的参数expression为“updateComponent”,是和渲染有关的,渲染用到了哪些变量,所以就都会触发他们的getter)。

我们在defineReactive的时候,已经将变量的get和set方法覆盖了,写成了下面这样。if (Dep.target) dep.depend()

此时我们知道当前的Dep.target就是当前的watcher,然后,调用了该变量的dep的depend()方法。

dep的depend方法调用了 Dep.target.addDep(this),也就是当前的watcher调用了addDep,把该dep放进了当前watcher的newDeps里,也就完成了watcher的依赖收集。this.newDeps.push(dep)

并且通过dep.addSub(this),将该watcher也放进了该dep的subs里,完成了该watcher对该dep的订阅

export function pushTarget (target: ?Watcher) {
targetStack.push(target)
Dep.target = target
}
export default class Dep {
static target: ?Watcher;
id: number;
subs: Array<Watcher>;

constructor () {
this.id = uid++
this.subs = []
}
//.....
}
 Object.defineProperty(obj, key, {
enumerable: true,
configurable: true,
get: function reactiveGetter () {
const value = getter ? getter.call(obj) : val
if (Dep.target) {
dep.depend()
if (childOb) {
childOb.dep.depend()
if (Array.isArray(value)) {
dependArray(value)
}
}
}
return value
},
//.....
}
 depend () {
let i = this.deps.length
while (i--) {
this.deps[i].depend()
}
}
  /**
* Add a dependency to this directive.
*/
addDep (dep: Dep) {
const id = dep.id
if (!this.newDepIds.has(id)) {
this.newDepIds.add(id)
this.newDeps.push(dep)
if (!this.depIds.has(id)) {
dep.addSub(this)
}
}
}
/**
* A watcher parses an expression, collects dependencies,
* and fires callback when the expression value changes.
* This is used for both the $watch() api and directives.
*/
export default class Watcher {
vm: Component;
expression: string;
cb: Function;
id: number;
deep: boolean;
user: boolean;
lazy: boolean;
sync: boolean;
dirty: boolean;
active: boolean;
deps: Array<Dep>;
newDeps: Array<Dep>;
depIds: SimpleSet;
newDepIds: SimpleSet;
before: ?Function;
getter: Function;
value: any;

constructor (
vm: Component,
expOrFn: string | Function,
cb: Function,
options?: ?Object,
isRenderWatcher?: boolean
) {
this.vm = vm
if (isRenderWatcher) {
vm._watcher = this
}
vm._watchers.push(this)
// options
if (options) {
this.deep = !!options.deep
this.user = !!options.user
this.lazy = !!options.lazy
this.sync = !!options.sync
this.before = options.before
} else {
this.deep = this.user = this.lazy = this.sync = false
}
this.cb = cb
this.id = ++uid // uid for batching
this.active = true
this.dirty = this.lazy // for lazy watchers
this.deps = []
this.newDeps = []
this.depIds = new Set()
this.newDepIds = new Set()
this.expression = process.env.NODE_ENV !== 'production'
? expOrFn.toString()
: ''
// parse expression for getter
if (typeof expOrFn === 'function') {
this.getter = expOrFn
} else {
this.getter = parsePath(expOrFn)
if (!this.getter) {
this.getter = noop
process.env.NODE_ENV !== 'production' && warn(
`Failed watching path: "${expOrFn}" ` +
'Watcher only accepts simple dot-delimited paths. ' +
'For full control, use a function instead.',
vm
)
}
}
this.value = this.lazy
? undefined
: this.get()
}

/**
* Evaluate the getter, and re-collect dependencies.
*/
get () {
pushTarget(this)
let value
const vm = this.vm
try {
value = this.getter.call(vm, vm)
} catch (e) {
if (this.user) {
handleError(e, vm, `getter for watcher "${this.expression}"`)
} else {
throw e
}
} finally {
// "touch" every property so they are all tracked as
// dependencies for deep watching
if (this.deep) {
traverse(value)
}
popTarget()
this.cleanupDeps()
}
return value
}

/**
* Add a dependency to this directive.
*/
addDep (dep: Dep) {
const id = dep.id
if (!this.newDepIds.has(id)) {
this.newDepIds.add(id)
this.newDeps.push(dep)
if (!this.depIds.has(id)) {
dep.addSub(this)
}
}
}

/**
* Clean up for dependency collection.
*/
cleanupDeps () {
let i = this.deps.length
while (i--) {
const dep = this.deps[i]
if (!this.newDepIds.has(dep.id)) {
dep.removeSub(this)
}
}
let tmp = this.depIds
this.depIds = this.newDepIds
this.newDepIds = tmp
this.newDepIds.clear()
tmp = this.deps
this.deps = this.newDeps
this.newDeps = tmp
this.newDeps.length = 0
}

/**
* Subscriber interface.
* Will be called when a dependency changes.
*/
update () {
/* istanbul ignore else */
if (this.lazy) {
this.dirty = true
} else if (this.sync) {
this.run()
} else {
queueWatcher(this)
}
}

/**
* Scheduler job interface.
* Will be called by the scheduler.
*/
run () {
if (this.active) {
const value = this.get()
if (
value !== this.value ||
// Deep watchers and watchers on Object/Arrays should fire even
// when the value is the same, because the value may
// have mutated.
isObject(value) ||
this.deep
) {
// set new value
const oldValue = this.value
this.value = value
if (this.user) {
const info = `callback for watcher "${this.expression}"`
invokeWithErrorHandling(this.cb, this.vm, [value, oldValue], this.vm, info)
} else {
this.cb.call(this.vm, value, oldValue)
}
}
}
}

/**
* Evaluate the value of the watcher.
* This only gets called for lazy watchers.
*/
evaluate () {
this.value = this.get()
this.dirty = false
}

/**
* Depend on all deps collected by this watcher.
*/
depend () {
let i = this.deps.length
while (i--) {
this.deps[i].depend()
}
}

/**
* Remove self from all dependencies' subscriber list.
*/
teardown () {
if (this.active) {
// remove self from vm's watcher list
// this is a somewhat expensive operation so we skip it
// if the vm is being destroyed.
if (!this.vm._isBeingDestroyed) {
remove(this.vm._watchers, this)
}
let i = this.deps.length
while (i--) {
this.deps[i].removeSub(this)
}
this.active = false
}
}
}

触发更新

最后我们在来简单看下,数据更新时,发生了什么。

前面我们对每个变量进行defineReactive的时候,编写了它的set方法。

在set方法中,如果变量发生了变化,就调用该变量的dep的notify()。通知该变量的订阅者们,变量发生变化了。

 set: function reactiveSetter (newVal) {
const value = getter ? getter.call(obj) : val
/* eslint-disable no-self-compare */
if (newVal === value || (newVal !== newVal && value !== value)) {
return
}
/* eslint-enable no-self-compare */
if (process.env.NODE_ENV !== 'production' && customSetter) {
customSetter()
}
// #7981: for accessor properties without setter
if (getter && !setter) return
if (setter) {
setter.call(obj, newVal)
} else {
val = newVal
}
childOb = !shallow && observe(newVal)
dep.notify()
}

可以看到notify ()方法中,对于该dep的subs(订阅者们),都调用了他们的update方法。

  notify () {
// stabilize the subscriber list first
const subs = this.subs.slice()
if (process.env.NODE_ENV !== 'production' && !config.async) {
// subs aren't sorted in scheduler if not running async
// we need to sort them now to make sure they fire in correct
// order
subs.sort((a, b) => a.id - b.id)
}
for (let i = 0, l = subs.length; i < l; i++) {
subs[i].update()
}
}

可以看到订阅者们(订阅者都是watcher),他们的update方法是将自己放进了一个执行队列里,等待执行。我们去看看这个queueWatcher方法。

/**
* Subscriber interface.
* Will be called when a dependency changes.
*/
update () {
/* istanbul ignore else */
if (this.lazy) {
this.dirty = true
} else if (this.sync) {
this.run()
} else {
queueWatcher(this)
}
}

在同目录下的scheduler.js文件中定义了 queueWatcher方法。简单来看,在nextTick的时候刷新了队列,也就是把队列里的watcher任务都执行完成了。

/**
* Push a watcher into the watcher queue.
* Jobs with duplicate IDs will be skipped unless it's
* pushed when the queue is being flushed.
*/
export function queueWatcher (watcher: Watcher) {
const id = watcher.id
if (has[id] == null) {
has[id] = true
if (!flushing) {
queue.push(watcher)
} else {
// if already flushing, splice the watcher based on its id
// if already past its id, it will be run next immediately.
let i = queue.length - 1
while (i > index && queue[i].id > watcher.id) {
i--
}
queue.splice(i + 1, 0, watcher)
}
// queue the flush
if (!waiting) {
waiting = true

if (process.env.NODE_ENV !== 'production' && !config.async) {
flushSchedulerQueue()
return
}
nextTick(flushSchedulerQueue)
}
}
}

至此,响应式原理的基本原理就已经水落石出了。还有其他的细节等后续再更新。